主成分分分析也称作主分量分析,是霍特林(Hotelling)在1933年首先提出。主成分分析是利用降维的思想,在损失较少信息的前提下把多个指标转化为较少的综合指标。转化生成的综合指标即称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分互不相关。Stata对主成分分析的主要内容包括:主成分估计、主成分分析的恰当性(包括负偏协方差矩阵和负偏相关系数矩阵、KMO(Kaiser—Meyer—Olkin)抽样充分性、复相关系数、共同度等指标测度)、主成分的旋转、预测、各种检验、碎石图、得分图、载荷图等。
yijai'bjij,i1,2,,n主成分的模型表达式为:
pCVVivivii1vivj0j1,2,,p
diag(1,2,,p),12p其中,a称为得分,b称为载荷。主成分分析主要的分析方法是对相关系数矩阵(或协方差矩阵)进行特征值分析。
Stata中可以通过负偏相关系数矩阵、负相关系数平方和KMO值对主成分分析的恰当性进行分析。负偏相关系数矩阵即变量之间两两偏相关系数的负数。非对角线元素则为负的偏相关系数.如果变量之间存在较强的共性,则偏相关系数比较低。因此,如果矩阵中偏相关系数较高的个数比较多,说明某一些变量与另外一些变量的相关性比较低,主成分模型可能不适用。这时,主成分分析不能得到很好的数据约化效果。
Kaiser-Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间.KMO越高,表明变量的共性越强。如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果.根据Kaiser(1974),一般的判断标准如下:0。00-0.49,不能接受(unacceptable);0.50—0.59,非常差(miserable);0。60-0。69,勉强接受(mediocre);0.70-0。79,可以接受(middling);0。80-0.,比较好(meritorious);0.90-1.00,非常好(marvelous)。
SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适。
成分载荷、KMO、SMC等指标都可以通过extat命令进行分析。
多元方差分析是方差分析在多元中的扩展,即模型含有多个响应变量.本章介绍多元(协)方差分析以及霍特林(Hotelling)均值向量T检验。
12。1 主成分估计
Stata可以通过变量进行主成分分析,也可以直接通过相关系数矩阵或协方差矩阵进行。
(1)sysuse auto,clear
pca trunk weight length headroom
pca trunk weight length headroom, comp(2) covariance
(2)webuse bg2,clear pca bg2cost*, vce(normal)
12。2 Estat
estat给出了几个非常有用的工具,包括KMO、SMC等指标。
webuse bg2,clear
pca bg2cost*, vce(normal) estat anti estat kmo estat loadings estat residuals estat smc estat summarize
12.3 预测
Stata可以通过predict预测变量得分、拟合值和残差等。
webuse bg2,clear
pca bg2cost*, vce(normal)
predict score fit residual q (备注:q代表残差的平方和)
12。4 碎石图
碎石图是判断保留多少个主成分的重要方法。命令为screeplot。
webuse bg2,clear
pca bg2cost*, vce(normal) screeplot
Scree plot of eigenvalues after pca2Eigenvalues1.5.51123Number456
12.5 得分图、载荷图
得分图即不同主成分得分的散点图.命令为scoreplot.
webuse bg2,clear
pca bg2cost*, vce(normal) scoreplot
Score variables (pca)4Scores for component 2-4-6-202-4-20Scores for component 124 载荷图即不同主成分载荷的散点图.命令为loadingplot.
webuse bg2,clear
pca bg2cost*, vce(normal) loadingplot
Component loadings.6bg2cost1.5Component 2bg2cost3bg2cost2.4bg2cost5bg2cost6.3bg2cost4-.4-.20.2Component 1.4.6
12。6 旋转
对载荷进行旋转的命令格式为rotate。
webuse bg2,clear
pca bg2cost*, vce(normal) rotate
例:对中国30个省市自治区经济发展基本情况的指标主成分分析,原始数据如下表:
居民
省份
GDP (亿元)
消费水平
固定资产投资
职工平均工资
货物周转量 (亿吨
居民消费价格指数
商品零售价格指数 (上年100) x7 104.4 105.1 106.7 107.2 105.3 105.8 105。3 104。9 106。3 106.3 105.7 104。9 107。5 106.3 105.6 106 107.6 106.7 105 105。3 106.1 103.9
工业总产值 (亿元) x8 10413 12503 23031 10024 24769 7624.5 25121 67799 40832 11162 15213 62959 26028 13455 11553 65425 6072 1103.1 5755.9 14762 5144.6 48。19
(亿元) (元)
(元) x2
x3
x4 56328 41748 25828
(上年
公里)
100) x5 758。9 2703.4 2562.2
x6 105.1 105。4 106.2 107。2 105。7 104.6 105.1 105.6 105.8 105.4 105 106。2 104。6 106 105。3 107 106。3 106 105.6 107.8 106。9 105.6 105.1 107。6 105。7 105。7
area 北 京 天 津 河 北 山 西 内蒙古 辽 宁 吉 林 黑龙江 上 海 江 苏 浙 江 安 徽 福 建 江 西 山 东 河 南 湖 北 湖 南 广 东 广 西 海 南 重 庆 四 川 贵 州 云 南 西 藏
x1
10488。03 20346 3814。7 6354。38 14000 33。8 16188。61 6938.73 7761。8 13461.57 24.06
8310
6570 8866。6 6187 3531。2 8108
5475.4
9625 10019.1 7591 5038。9 7039
3656
24756 5925。5 26114 3658。7 27729 7033。9 23486 1157。8 23046 1690。9 56565 16029.8 31667 4300。9 34146 4974。9 26363 25702
5843.2 2396.2
104。7 8740。2 106.2 8406。9
13698.15 27343 4823。1 30312。61 11013 15300。6 21486.92 133 8874.17 80。33 31072.06 18407.78 11330.38 11156。 7171.58 1459。23 5096。66 12506。25 3333。4 5700。1 395.91
6377
10823。11 10361
9323 6747 5207.7
5753 4745。4 9573 15435。9 5877 10490。6 7406 7145
57 5534
21000 2285。5 204 10107.8 24816 5165。1 22739 2526。4 24870 2349。8 33110 4428。4 25660 218
2079 597.7
106。1 8499。6
35696。46 14390 10868.7
6103 3756。4 6550
705。4
9835 3979。6 6072 7127。8 4426 3504
18.5 309.9
4553 3435。9
26985 1490。3 25038 1578。7 24602 24030 47280
805。3 821.3 35.5
107.2 3111。1
陕 西 甘 肃 青 海 宁 夏 新 疆
6851.32 3176.11 961.53 1098.51 4203。41
6290 4614。4 4869 1712。8 5830 7193 5542
583。2 828。9 2260
25942 30983 30719 24687
2027 335。7 703。6 1273
106.4 108。2 110。1 108。5 108.1
106。9 107。9 110。6
7480.8 3667.5 1103.1
24017 1594。9
108。5 1366。5 108。5 4276。1
数据 :来源于2009年《中国统计年鉴》
程序:
clear
*定义变量的标签 label var area 省份
label var x1 ”GDP (亿元)” label var x2 \"居民消费水平(元)\" label var x3 ”固定资产投资(亿元)\" label var x4 ”职工平均工资(元)\" label var x5 \"货物周转量 (亿吨公里)\" label var x6 ”居民消费价格指数 (上年100)\" label var x7 ”商品零售价格指数 (上年100)\" label var x8 \"工业总产值 (亿元)”
describe
pca x1—x8 /*主成分估计*/
estat kmo /*KMO检验,越高越好*/ estat smc /*SMC检验,值越高越好*/
screeplot /* 碎石图(特征值等于1处的水平线标示保留主成分的分界点)*/
predict score fit residual q /*预测变量得分、拟合值和残差以及残差的平方和*/ predict f1 f2 f3 predict q1 q2 q3
scoreplot,mlabel(area) yline(0) xline(0) /*得分图1*/
scoreplot,xtitle(”经济社会总量\") ytitle(”人民生活水平”) /// mlabel(area) yline(0) xline(0) /*得分图*/
scatter f2 f3,xtitle(\"人民生活水平\") ytitle(”物价水平\") /// mlabel(area) yline(0) xline(0) /*得分图*/ scoreplot, factors(3) mlabel(area) /*得分图*/
scoreplot,combined factors(3) mlabel(area) yline(0) xline(0) /*得分图*/
loadingplot , yline(0) xline(0)/*载荷图 */
loadingplot , combined factors(3) yline(0) xline(0)/*载荷图 */
rotate /*旋转*/
分析:
先对数据进行标准化处理后,接着进行主成分分析,可以得到:
表:R的特征值和特征向量 主成分 特征值 方差贡献率 累计贡献率 1 4.25488 2.50258 0.5319 2 1。75229 .537538 0.7509 3 1。21475 。760916 0。9027 4 .453839 .260701 0。9595 5 。193137 .124141 0.9836 6 。06962 .02734 0.9922 7 .04198 .0211945 0.9974 8 .0204553 . 1。0000 从表中看到,前3个特征值累计贡献率已达90.27%,说明前3个主成分基本包含了全部指标具有的信息,我们取前3个特征值。通过对载荷矩阵进行旋转,可得到,相应的特征向量,见下表:
第一、第二、第三特征值向量 第一特征向量 第二特征向量 第三特征向量 x1_s 0.4249 0。30 0。1079 x2_s 0.3217 -0。4467 0。3101 x3_s 0.4057 0.3855 -0.0181 x4_s 0.1856 —0.6100 0。2536 x5_s 0.3520 —0.0510 0。3714 x6_s —0.3444 0.1427 0.5784 x7_s -0.3118 0.2767 0。5769 x8_s 0。4209 0。2938 0。1495 因而前三个主成分为: 第一主成分: F1=0。4249x1+0。3217x2_s+0。4057x3_s+0。1856x4_s
+0.3520x5_s—0.3444x6_s-0.3118x7_s+0。4209x8_s
第二主成分: F2=0.30x1—0。4467x2_s+0.3855x3_s—0.6100x4_s
-0.0510x5_s+0.1427x6_s+0。2767x7_s+0.2938x8_s
第三主成分: F3=0.1079x1+0。3101x2_s—0。0181x3_s+0.2536x4_s
+0。3714x5_s—0.5784x6_s+0.5769x7_s+0。1495x8_s
在第一主成分的表达式中第一、第三、第指标的系数较大,这三项指标起主要作用,我们可以把第一主成分看成是由国内生产总值、固定资产投资、工业总产值所刻划的反映经济社会总量的综合指标;
在第二主成分中,第二、第三、第四项指标的影响大,且第二、第四项的影响较大,因此可以把第二主成分看成是由居民消费水平、职工平均工资表示的反
映人民生活水平的综合指标;
在第三主成分中,第六、第七项指标大于其余的指标,可看成是受居民消费价格指数、商品零售价格指数的影响,反映物价水平的综合指标。
在这次的主成分分析里面,我们可以进行些检验以验证我们分析的效果,通过KMO检验和SMC检验,得到了下面的检验值:
变量的KMO、SMC值表 变量 KMO值 SMC值 x1_s 0.7423 0。9656 x2_s 0.5361 0.8366 x3_s 0.7706 0.9276 x4_s 0.4737 0。77 x5_s 0.6794 0.6515 x6_s 0。5467 0。8837 x7_s 0.5482 0。8627 x8_s 0。7692 0。9591 合计 0。47 --- Kaiser—Meyer-Olkin抽样充分性测度也是用于测量变量之间相关关系的强弱的重要指标,是通过比较两个变量的相关系数与偏相关系数得到的。KMO介于0于1之间。KMO越高,表明变量的共性越强.如果偏相关系数相对于相关系数比较高,则KMO比较低,主成分分析不能起到很好的数据约化效果。根据Kaiser(1974),一般的判断标准如下:0.00-0.49,不能接受(unacceptable);0。50-0。59,非常差(miserable);0.60—0.69,勉强接受(mediocre);0.70—0。79,可以接受(middling);0.80-0.,比较好(meritorious);0.90-1。00,非常好(marvelous)。
SMC即一个变量与其他所有变量的复相关系数的平方,也就是复回归方程的可决系数。SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适.
根据KMO越高,表明变量的共性越强和SMC比较高表明变量的线性关系越强,共性越强,主成分分析就越合适.从上表可以看出,在该例中,各变量基本符合要求。
通过碎石图,我们可以很直观的看出各个特征值的大小。在该图中,特征值等于1处的水平线标示了保留主成分分析的分界点,同时再次强调了本例中的成分4到8并不重要。
碎石图
Scree plot of eigenvalues after pca4Eigenvalues0012324Number68
通过predict我们可以得出各个观察变量的所对应的各个主成分的线性组合(即得分).
在得分图里,我们可以看到不同地区在第一、第二主成分里各自的得分情况。
得分图
Score variables (pca)河 南河 北山 东江 苏广 东2Scores for component 2青 海湖 北新 肃疆广 西甘江 西安 四徽 川山 西贵 州陕 西湖 南云 南黑龙江吉 林海 南福 建宁 夏内蒙古重 庆-20辽 宁浙 江西 藏天 津北 京-4上 海-4-20Scores for component 124
Score variables (pca)Scores for component 3山 东河 南江 苏广 东河 北 北湖 疆新 广 西西 江 川四青 海甘徽 安西 宁 江辽 浙西 陕 州山贵肃南 湖南 云林 吉黑龙江南 海建 福宁 夏内蒙古重 庆西 藏天 津北 京3青 海上 海22-4-2上 海宁 夏新 疆河 南广 东甘 肃广 西江 浙山 西山 东河 北贵 州苏 江徽 安京 北陕 西天 津湖 北海 南辽 宁湖 南江 西黑龙江福 建内蒙古林 吉云 南庆重四 川西 藏0-2-101-420-2Scores for component 14-420-2Scores for component 143上 海青 海2北 京天 津西 藏新 疆河 南甘西广 东 肃广 江 浙西河 北山 东山州 贵江 苏徽安陕 西海 南湖 北 宁辽 湖 西江南黑龙江内蒙古建 福南林 云 重 庆吉四 川宁 夏-2-101-40-2Scores for component 22
通过载荷图,我们可以直观看出各个变量对主成分影响的大小。
载荷图
Component loadings.4x3_sx7_sx1_sx8_s.2x6_sComponent 20x5_s-.4-.2x2_s-.6x4_s-.4-.20Component 1.2.4
Component loadings.4Component 2.2x7_sx6_sx3_sx1_sx8_s.6x6_sx7_sComponent 3.40x5_sx2_sx5_s-.2.2x4_sx8_sx1_s-.6-.4-.4-.20Component 1.2.40x4_sx2_sx3_s-.4-.20Component 1.2.4.6x6_sx7_sComponent 3.4x5_sx4_sx2_s.2x8_sx1_s0x3_s-.6-.4-.20Component 2.2.4
运行rotate进行旋转后,我们将旋转后的结果和旋转前的结果进行比较,可以发现每一个观察变量独自构成一个主成分,方差贡献相等,都为12%。