精品文档
一.三角函数公式
1.诱导公式
sin(-a) = - sin(a) cos(-a) = cos(a)
sin(π/2(90度) - a) = cos(a) cos(π/2(90度) - a) = sin(a) sin(π/2 (90度)+ a) = cos(a) cos(π/2 (90度)+ a) = - sin(a) sin(π(180度)- a) = sin(a) cos(π(180度) - a) = - cos(a) sin(π(180度)+ a) = - sin(a) cos(π(180度)+ a) = - cos(a) 2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b) cos(a + b) = cos(a)cos(b) - sin(a)sin(b) sin(a - b) = sin(a)cos(b) - cos(a)sin(b) cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)] tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)] 3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2] sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2] cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2] cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2] 4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)] cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)] sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)] 5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
.
精品文档
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2 cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)] 7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)] cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)] tan(a) = 2tan(a/2) / [1-tan2(a/2)
二.反三角函数公式
反三角函数其他公式: cos(arcsinx)=√(1-x^2) arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x arcsin x = x + x^3/(2*3) + (1*3)x^5/(2*4*5) +
1*3*5(x^7)/(2*4*6*7)……+(2k+1)!!*x^(2k-1)/(2k!!*(2k+1))+……(|x|<1) !!表示双阶乘
arccos x = π -(x + x^3/(2*3) + (1*3)x^5/(2*4*5) + 1*3*5(x^7)/(2*4*6*7)……)(|x|<1)
arctan x = x - x^3/3 + x^5/5 -…… 举例
当 x∈[-π/2,π/2] 有arcsin(sinx)=x x∈[0,π], arccos(cosx)=x x∈(-π/2,π/2), arctan(tanx)=x x∈(0,π), arccot(cotx)=x
.
精品文档
x>0,arctanx=π/2-arctan1/x,arccotx类似
若 (arctanx+arctany)∈(-π/2,π/2),则 arctanx+arctany=arctan((x+y)/(1-xy)) 例如,arcsinχ表示角α,满足α∈[-π/2,π/2]且sinα=χ;arccos(-4/5)表示角β,满足β∈[0,π]且cosβ=-4/5;arctan2表示角φ,满足φ∈(-π/2,π/2)且tanφ=2
.