AndrzejCzygrinow1,MichalHa´n´ckowiak2,andEdytaSzyma´nska2
1
2
DepartmentofMathematicsandStatistics
ArizonaStateUniversityTempe,AZ85287-1804,USAandrzej@math.la.asu.edu
FacultyofMathematicsandComputerScience
AdamMickiewiczUniversity
Pozna´n,Polandmhanckow@amu.edu.pledka@amu.edu.pl
Abstract.Wepresentadistributedapproximationalgorithmthatcom-2
β(G),whereputesineverygraphGamatchingMofsizeatleast3β(G)isthesizeofamaximummatchinginG.ThealgorithmrunsinO(log4|V(G)|)roundsinthesynchronous,messagepassingmodelofcomputationandmatchesthebestknownasymptoticcomplexityforcomputingamaximalmatchinginthesameprotocol.Thisimprovestherunningtimeofanalgorithmproposedrecentlybytheauthorsin[2].
1Introduction
Anysetofpairwisedisjointedgesconstitutesamatchingofagivengraph.Fromthealgorithmicpointofviewtwobasicproblemsariseinthecontextofmatchings.Oneistocomputeanymatchingofmaximumcardinality(maximummatching),thesecondoneistoconstructamatchingnotcontainedinanyothermatchingofagivengraph(inclusionmaximalmatching).Thereisrichlitera-tureconcerningsequentialalgorithmsforthemaximummatchingproblem(seeLov´aszandPlummer[5]foranexcellentsurvey).Severalsequentialalgorithmsforgeneralgraphswhicharepolynomialintimeareknownandmanyofthemuseaugmentingpathsasamaintool.Ithasturnedout,however,thateventheverysimplesequentialgreedyalgorithmisnotknowntobeimplementedinparallel.Manyproblemsbecomeevenmoredifficultwhentheparallelnetworkisnotequippedwiththesharedmemorystorage.Theincreasingimportanceoflarge-scalenetworkssuchasInternet,ad-hocandsensornetworkshavemoti-vatedactiveresearchondistributedcomputinginamessagepassingsystems.Adoptingtheexistingsequentialproceduresresultsinaratherveryinefficientschemeandanewalgorithmicapproachisneeded.
WeconsiderthedistributedmodelofcomputationintroducedbyLinialin[6].Inthismodelanetworkisrepresentedbyanundirectedgraphwhereeach
ResearchsupportedbyKBNgrantno.7T11C03220
vertexstandsforaprocessorandeachedgecorrespondstoaconnectionbetweentwoprocessorsinthenetwork.EachprocessorhasauniqueIDandknowsthenumberofverticesinthegraphbutnottheglobaltopologyofthenetwork.Weassumefullsynchronizationofthenetwork:computationisperformedinsteps.Inasinglestep,eachprocessorcansendamessagetoallofitsneighbors,col-lectmessagesfromitsneighbors,andperformsomelocalcomputations.NotethattheabovemodeliscompletelydifferentfromtheparallelPRAMmodelwhereeachcomputationalunitcancommunicatewithallotherunitsateachstepofthecomputations.Asaresultmanyproblemsthatadmitefficientalgo-rithmsinthePRAMmodelarestillopeninthedistributedmodel.Aneminentexample,whichisageneralizationoftheproblemstudiedinthiswork,istheMaximalIndependentSet(MIS)Problem.EfficientNCalgorithmsforMISarewell-known([7])butthequestionifthereisanefficientdistributedalgorithmfortheproblemisoneofthemainopenproblemsinthearea([6]).However,anefficientdistributedalgorithmfortherelatedMaximalMatching(MM)ProblemisknownduetoHa´n´ckowiak,Karo´nski,andPanconesi.In[4]thethreeauthorsprovedthefollowingtheorem.
Theorem1([4]).ThereisadistributedprocedureMatchwhichinO(log4n)manycommunicationroundsinthesynchronous,distributedmodelofcomputa-tion,computesamaximalmatchingMinanygraphGonnvertices.
TheprocedureMatchisastartingpointforfurtherresearchin[2]andinthispaper.In[2],buildingonideasfrom[4],theauthorsdesignedanalgorithmwhichfindsamaximalmatchingofsizewhichisrelativelyclosetothemaximum:Theorem2([2]).ThereisadistributedalgorithmwhichinO(log6n)stepsfindsamatchingMinanygraphGonnvertices,suchthat
|M|≥
2
β(G)3
whereβ(G)denotesthesizeofthelargestmatchinginG.
Inthispaper,weproposeasubstantialmodificationofthealgorithmfromTheo-rem2whichrunsinO(log4n)stepsandthereforehasthesametimecomplexityasthealgorithmMatchinTheorem1.Thefollowingtheoremisproved:Theorem3.ThereisadistributedprocedureMatchingwhichinO(log4n)stepsfindsinanygraphG(V,E)withn=|V(G)|verticesamatchingM,suchthat
2
|M|≥β(G).
3Althoughtheapproximationratioofourresultmaynotbeveryappealing,itshouldberememberedthattheproblemofcomputinganoptimalsolutioninageneralgraphisevennotknowntobeinNC.Andyettheapproximationalgorithmgivenby[3]isinherentlydesignedfortheEREWPRAM.
Interestingly,theresultispurelydeterministicandtogetherwith[4]standsamongfewexamplesofdistributedcomputing,wherepolylogarithmictimecom-plexityisachievedwithouttheuseofrandombits.TheO(log6n)complexityofthealgorithmfromTheorem2comesfromsequentialiterationsoverO(log2n)blocks(definedinthenextsection).Itisthispartofthealgorithmwhichweimprove.ThemodificationthatwepresentallowsustoperformcomputationsinparallelandasaresultwedroptheO(log2n)factorinthetimecomplexityaltogether.
Followingthestrategyfrom[2],wecomputeamaximalmatchingMandthenamaximalsetofvertex-disjointpathsoflengththreethataugmentM.AfteraugmentingthematchingMalongthesepathsweobtainanewmatchingM
2
suchthat|M|≥3β(G).TofindamaximalmatchingweinvoketheprocedureMatchfromTheorem1andtocomputeamaximalsetofdisjointpathswedesignanewprocedure,whichisthemaincontributionofthispaper.
Inthenextsection,wepresentdefinitionsandnotationwhicharenecessarytodevelopthealgorithmtogetherwithsomepreliminarylemmas.Thelastsec-tioncontainsthedescriptionofthealgorithmandasketchoftheproofofitscorrectness.Forcompleteproofsthereaderisreferredtothefullversionofthispaper.
2Definitions,NotationandPreliminaryLemmas
Inthissectionwefixsomenotation,introduceterminology,andstateafewusefullemmas.Asouralgorithmcreatesanauxiliarymultigraph,wedefinemostofthetermsinthemultigraphsetting.
LetMbeamatchingina(multi)graphG=(V,E).WesaythatavertexvisM-saturatedifvisanendpointofsomeedgefromM.Anedgee={u,v}isM-saturatedifeitheruorvisM-saturated.ApathPisM-alternatingifitcontainsalternatelyedgesfromMandfromE\\M.ApathPoflength2k+1,k≥0,augmentsMifPisM-alternatingandnoendofPisM-saturated.AspecialroleinthepaperwillbeplayedbypathsoflengththreeaugmentingM.Apathiscalledan(M,3)-pathifitaugmentsMandhaslengththree.Asetofpathsiscalledindependentifeverytwopathsfromthesetarevertex-disjoint.
Justlikein[2],ouralgorithmisbasedonthefollowingfactsthatarestandardingraphtheory.Claim4
(a)LetMbeanarbitrarymatchinginG.Iftherearenopathsoflengthatmost
threeaugmentingM,then
2
|M|≥β(G).
3
(b)LetMbeamaximalmatchinginagraphGandletPbeamaximalin-
dependentsetofpathsoflengththreeaugmentingM.Further,letM=M÷(P∈PE(P))bethematchingobtainedbyaugmentingMalongthepathsfromP.ThentherearenopathsoflengthatmostthreeaugmentingMinG.
Consequently,parts(a)and(b)ofClaim4togetherassure,thatthematchingMsatisfies
2
|M|≥β(G).
3
Intheprocessofconstructingthematchingwewillusethenotionofasubstantialmatching.
Definition1.LetMbeamatchinginamultigraphG=(V,E)andγ>0.AmatchingMisγ-substantialinGifthenumberofM-saturatededgesofGisatleastγ|E|.
Usinganalgorithmfrom[4](withminorchanges),wecanfindasubstantialmatchinginabipartitemultigraph.
Lemma1.ForallconstantsC>0and0<γ<1thereexistsadistributedalgorithmthatfindsinO(log3n)stepsaγ-substantialmatchinginabipartitemultigraphG=(L,R,F),where|F|≤nCand|L|+|R|=n.
Similarly,wewillalsousethenotionofasubstantialsetofpaths.LetP3(M)denotethesetofall(M,3)-pathsinagraphG=(V,E).
Definition2.LetMbeamatchinginGandγ>0.AsetPof(M,3)-pathsiscalledγ-path-substantialinGifthenumberofpathsfromP3(M)thathaveacommonvertexwithsomepathinPisatleastγ|P3(M)|.
Nowwewillintroducemoretechnicalterminology.Givenabipartitemulti-graphH=(L,R,E)wepartitionitsleft-handsideLintosetsLi={u∈L:Dii
2 2.Foreveryvertexa∈A,degS(a)=1.3.Foreveryvertexb∈B,degS(b) Lemma2([4]).ForeveryconstantCandinputparameterDthereexistaconstantK=K(C)andadistributedalgorithmthatfindsinO(log3n)stepsa1(2,K)-spannerinamultigraphH=(A,B,E)thatisaD-blockwith|E|≤nCandn=|A|+|B|. Specifically,inourcaseC=4andK<100. Inordertomotivatethefollowingdefinitions,wespendsometimeonex-plainingthemainideaofouralgorithm. Theapproachusedtofindasetofaugmentingpathsisbasedonthefollowingstrategy.FirstwefindamaximalmatchingMusingtheprocedureMatchgiveninTheorem1.Thenthemaximalindependentsetof(M,3)-pathsisgraduallyconstructedinrounds.Ineachroundasubstantialsetof(M,3)-pathsisfound.Itturnsoutthatwecanfindasubstantialsetof(M,3)-pathsinaspeciallayeredgraph.Forthatreason,fromtheinputgraph,weobtainavirtualauxiliarygraphwhichisoftheform.Finally,oncethepathsarefoundinthelayeredgraph,wetranslatethembacktotheoriginalgraph. Thelayeredgraphwillbeasimplegraphwhichhasfourlayersofverticesandwewillrefertoitasa4L-graph.Apreciseconstructionofa4L-graphisgiveninprocedureReduceplacedinthenextsectionandherewejustintroduceitsstructuralfeatures.Every4L-graphH=H(G,M),withrespecttoGandamaximalmatchingM,hasthevertexsetV(H)partitionedintofournonemptysetsX1,X2,X3,X4sothatH[X2,X3]=MandeveryvertexfromX1isadjacentonlytoverticesfromX2andeveryvertexfromX4isadjacentonlytoverticesfromX3.Inotherwords,Hconsistsof3bipartitegraphs.TheedgesofH[X1,X2]andH[X3,X4]arepotentialingredientsofthe(M,3)-pathsextendingM.Thedesiredstructureofa4L-graphisobtainedbyfirstremovingfromE(G)alledgeswhichviolatetheaboveproperties.WewilldistinguishintheinputgraphGthreetypesofedgeswithrespecttoM: (a)edgesthatareinM, (b)edgesthathaveexactlyoneendpointinM(theseedgesmayformtriangles basedonanedgefromM), (c)edgesthatarenotinMbuthavebothendpointsinM. Notethatedgesfrom(c)donotbelongtoany(M,3)-pathofGandthereforewecandeletethem.Next,thetrianglesbuiltofedgesoftype(b)arecarefullydestroyed(seeprocedureReduce).Finally,someverticesfromV(G)\\V(M)arereplicatedtohavetheircounterpartsinX4andX1,respectively. LetH=(X1,X2,X3,X4,E)bea4L-graph.NowweintroduceanauxiliarymultigraphMul(H)=(X1,X2,X3,X4,F)definedasfollows. Definition4.LetH=(X1,X2,X3,X4,E)bea4L-graphandforeverye∈H[X1,X2]∪H[X3,X4],letwedenotethenumberof(M,3)-pathsinHcontaininge.ThemultigraphMul(H)=(X1,X2,X3,X4,F)isagraphobtainedfromHbyputtingwecopiesofeinFforeveryedgee∈H[X1,X2]∪H[X3,X4],andonecopyofeforeveryedgee∈H[X2,X3]inF. ThemainpropertyofMul(H)isthatedgesinMul(H)[X1,X2]andsimilarly,inMul(H)[X3,X4]correspondto(M,3)−pathsinH.InthecourseofourproofwewillmakeuseofitbyfindingasubstantialmatchinginMul(H)[X1,X2]anddeducingasubstantialpropertyforasetof(M,3)−pathsbuiltonthematching.DirectlyfromDefinition4wecanderivethefollowingfact. Fact5Foreverye={a,a}∈H[X2,X3],degMul(H)(a)=degMul(H)(a)whichisequaltothenumberof(M,3)-pathscontaininge.Moreover,thereisaone-to-onecorrespondencebetweentheedgesinMul(H)[X1,X2]andthe(M,3)-pathsinH. Tothisend,inMul(H),wedefinea4L-D-block.Theactualprocessofcon-structingthesetof(M,3)−pathswillbeperformedinblocksthatwillpartitionthesetsX2andX3. Definition5.LetRbethesetofalledgese={a,a}∈Mul(H)[X2,X3]thatsatisfy D (X1,X2,X3,X4,F)ofMul(H)=(X1,X2,X3,X4,F)whichcontainsalledgesincidenttoedgesfromRiscalleda4L-D-block. Itisworthnoticinghere,thatconsideringD=D(i)=2ifori=0,1,...,logn,4L-blocksBD(i)areedgedisjointandpartitionthesetsX2andX3.Whatismore,everysubgraphBD(i)(H)[X3,X4]isaD(i)−block. 3Algorithm Inthissectionwepresentthemainalgorithm.Ineachiterationitconstructsasubstantialsetof(M,3)-pathsandaddsthemtotheglobalsetofindependent(M,3)-paths.Thenthepathsareremovedfromthegraphtogetherwithalledgesincidenttothem.ItstopswhennosuchpathsareleftinthegraphandoutputsanewmatchingM∗.Belowwepresentanoutlineofthealgorithmtogivesomeintuitionbehindourapproach. ProcedureMatching Input:GraphGOutput:MatchingM∗ 1.FindamaximalmatchingMinG.2.Forj:=1toO(logn)do ¯=G¯(G,M)=(X1,X2,X3,X4,E)fromGand(a)Constructa4L−graphG M. =Mul(G¯)=(X1,X2,X3,X4,F)withmulti-(b)ConstructamultigraphG ¯[X1,X2]andG¯[X3,X4].pleedgesinG ofdisjoint(M,3)-pathsinGusing(c)Findaξ−path-substantialsetP spannersinblocksinparallel. foundinGtoPinG.(d)TranslateP (e)Accumulatethe(M,3)-pathsfromP. (f)UpdateG(removefromGthepathsinPwithalledgesincidentto them). 3.UpdateM∗byaugmentingMalongthepathsfromP. Thealgorithmconsistsofaprocedurethatcomputesasubstantialmatching,andtwoproceduresfrom[2].Firstwedescribeanewprocedurewhichcomputesasubstantialsetof(M,3)-pathsinagiven4L-graph.Thenwerecalltwoproce-duresfrom[2];thefirstonereducesagraphG=(V,E)andamaximalmatching ¯=(X1,X2,X3,X4,E),thesecondonetranslatesaαMinGtoa4L-graphG-ofindependent(M,3)−pathsinGtoα-substantialsetPofsubstantialsetP independent(M,3)−pathsinG.3.1 Algorithmina4L-graph Inthissection,wepresentthemainpartofouralgorithm,ProcedurePaths-In4LGraph.Thisprocedurefindsaξ-path-substantialsetPofdisjoint(M,3)-pathsinalayeredgraph.Wearebuildingthepathsintwophases.Inthefirst ¯[X3,X4]whichwillaugmentthematch-phasewechoosecandidatesforedgesinG ingM.ThisisperformedbyfirstconstructingastarforestwithallstarshavingcentersinX4.Afterthesecondphaseatmostoneedgefromeverystarisaddedtothesetof(M,3)-paths.ThereforewemovealongthestarraystothesetX2andintroduceanauxiliary,bipartitegraphwithverticescorrespondingtothestarswejustcreated,ononesideandX1ontheother.Inthesecondphasewemoveourattentiontothisgraphandfindasubstantialmatchinginit.After [X3,X4]weobtainthesetPofextendinguniquelythematchingtothegraphG disjoint(M,3)−paths. PhaseA:Steps1-5constructastarforestSinH[X3,X4].PhaseB:Steps6-8constructthesetPusingS. NotethatPhaseBisanalogoustothemainalgorithmforthe4L-graphin[2].However,sincetheblocksinPathsIn4LGrapharedefinedinanewwaycom-paredwith[2],theanalysisisdifferent.ThemainprobleminPathsIn4LGraphistodesignthestarforestSsothatthestarscanbegluedtogetherandusedassuper-verticesinPhaseB.PropertiesofSwhichweneedtoprovethatthealgorithmisindeedcorrectarequitedelicate,ononehandwemustdeletesomeedgesofaunionofspannersStomaketheanalysiswork,ontheotherweneedtokeepmostofthemtoretainthesubstantialproperty.Inparticular,ifastarhasexactlyonevertexinablockthenitmusthavenoverticesinanyotherblock.Thisistakencareofinsteps(4)and(5)oftheproceduregivenbelow. ProcedurePathsIn4LGraph ¯=(X1,X2,X3,X4,E),whereG¯[X2,X3]=M.Input:4L-graphG ¯forOutput:AsetPofdisjoint(M,3)-pathswhichisξ-path-substantialinG someconstantξ>0. :=Mul(G¯)asinDefinition4.1.Constructthe4L-multigraphG 2.Fori=0to4logndoD(i):=2i )=(X1,X2(i),X3(i),X4,Ei),Bi:=BD(i)(G whereXj(i)isasubsetofXjcorrespondingtotheblockBi,forj=1,2.3.Inparallel,foreveryi:LetK=K(4)beaconstantinLemma2.Finda(12,K)-spannerSifromX3(i)toX4inBi[X3(i),X4](usingtheprocedurefrom[4]). 4logn Sibeastarforest.4.LetS= (a)ForanystarQ∈SletQi:=Q∩Si. (b)ForstarQinSletIQ:={i:|Qi|=1}(i.e.Qiisanedge)andlet JQ={i:|Qi|>1}. [X3,X4]thatareincidenttovertices(c)LetiQbethenumberofedgesofG [X3,X4]thatarefromi∈IQV(Qi)∩X3.LetjQbetheofedgesofG incidenttoverticesfromi∈JQV(Qi)∩X3. iQ=jQ= v∈V(Qi)∩X3 i∈IQ i=0 dG[X 3,X4] (v)(v) v∈V(Qi)∩X3 i∈JQ dG[X 3,X4] 5.Inparallel,foreverystarQ∈S: (a)IfiQ>jQthendeletefromQalltheedgesthatbelongtoi∈JQQi.In addition,selectk∈IQsuchthatk=maxIQanddeletefromQallstarsQiforwhichi=k.AsaresultQistheedgeQk. (b)IfiQ≤jQdeletefromQalltheedgesthatbelongtoi∈IQQi.LetSdenotethestarforestaftertheseoperations. =(X1,X,E)withX=6.Constructthefollowingauxiliarymulti-graphG22 {NX2(Q):Q∈S}andthesetofedgesE={{u,v}∈G:u∈X1andv∈ NX2(Q)forsomeQ∈S}. .7.Finda1/2-substantialmatchingMinG 8.Extend(inauniqueway)everyedgeofMtoapathPoflengththreeinthegraphusinganedgeofmatchingMandanedgeofastarinS.PisthesetofallpathsPobtainedfromM.Wewillneedsomemorenotationinthenexttwolemmas.RecallthatSisasetofstarswithcentersinX4.LetF4bethesetofverticesofstarsfromSwhichareinX4,F3thesetofverticesofstarsinSwhichareinX3.Inaddition ,andF2.,F3letF2:=N(F3)∩X2.Similarly,byconsideringS,wedefineF4 Thefollowinglemmaestimatesthenumberofedgesthatwemaylosewhileconcentratingonthestarsonly. 1 Lemma3.1.eG (F3,X4)≥32eG(X3,X4)1 2.eG (X1,X2).(X1,F2)≥32eG Proof(Sketch).ByFact5,theproofofbothpartsisthesame,anditfollows fromapropertyofthespannersSi(seePart1.ofDefinition3). 1 Lemma4.LetK=K(4)begiveninLemma2andletξ=256K.Thesetof ¯pathsPfoundbyPathsIn4LGraphisξ-path-substantialinG.Thealgorithm ¯))steps.PathsIn4LGraphrunsinO(log3V(G Proof(Sketch).Firstnotethatthetimecomplexitycomesfromfindingspanners inalltheblocks(inparallel)instep(3)andbyLemma2isO(log3n).LetPbethesetof(M,3)−pathsfoundbytheprocedurePathsIn4LGraph.InviewofFact5,toprovethatPisξ-path-substantial,weneedtoshowthateitherξ-[X1,X2]isincidenttoedgesofpathsfromPorξ-fractionfractionofedgesinG [X3,X4]isincidenttoedgesofpathsfromP.ForthatweconsiderofedgesinG foundinStep(7)andthesetWofverticesinX2thatareamatchingMinG inM-saturatedsuperverticesandarenotsaturatedbyMthemselves.ThenweconsidertwocasesbasedonthenumberofedgesincidenttoWwithrespectto 1 eG (X1,X2).IfitrelativelysmallthenthefactthatMis2-substantialcombined 1 withLemma3impliesthatξ=128.Thesecondcaseisabitmorecomplicated.WemoveourattentiontothelayersX3andX4.IncorporatingthepropertiesofthestarforestSandtheupperboundonthedegreeofspanners,weshow 1 thatatleast256K-fractionofedgesinEG (X3,X4)isincidenttocentersofstars 1 saturatedbypathsfromP.ThetwocasesyieldtheLemmawithξ=256K.3.2 Reduction,Translation,andModification Asindicatedinprevioussectionsourmainalgorithmcanbesummarizedasfollows.FirstcomputeamaximalmatchingM,nextiterateO(logn)timesthe ¯,followingsteps:(1)ReducegraphGandmatchingMtoalayeredgraphG ¯ofdisjoint(M,3)-pathsinG¯usingPathsIn4LGraph,(3)(2)FindasetP ¯topathsPinGmaintainingthesubstantialproperty,TranslatepathsfromP ¯withrespectP.Inthissection,wepresentprocedures:(4)ModifyGandG ¯;1.ReducewhichreducesGandMtoa4L-graphG ¯toasetofpathsPinG;2.TranslatewhichtranslatesP ¯withrespecttoP.3.ModifywhichmodifiesG ProceduresReduceandModifyaresimilartoproceduresin[2],Translate differsfromthecorrespondingprocedurein[2]onlybysmalldetails. ProcedureReduce Input:GraphGandamaximalmatchingMinG. ¯Output:4L-graphG. 1.Fore∈E(G)(inparallel)checkifeiscontainedinatleastone(M,3)-path. Ifitisnotthendeletee.Inparticular,alledgesfromE(G)\\MwhichhavebothendpointsinMaredeleted. 2.Foreveryedgem={m1,m2}∈M,withID(m1) {v+,v∈V(G)\\V(M)},andV1(M),V2(M)arecorrespondingendpointsofMthatisifm={m1,m2}∈MandID(m1) ¯,mthenumberofLemma5.Letm¯3denotethenumberof(M,3)-pathsinG3 (M,3)-pathsinG,andm3denotethenumberof(M,3)-pathsinG.Then1.m¯3,3=m2.m3/4≤m3. −+¯thenv1m1m2v2is(M,3)-pathinFact6Ifv1m1m2v2isan(M,3)-pathinGG. OurnextproceduremodifiesGwithrespecttothesetof(M,3)-pathsP.TheproceduredeletesalledgeswhichareincidenttopathsfromP.Asaresult,itispossiblethatsomeedgespresentinthemodifiedgraphGwillnotbelongtoany(M,3)-pathofG.Theseedgesaresubsequentlydeletedinstep(1)ofReduce. ProcedureModify Input:GraphGandasetPof(M,3)-pathsinG.Output:ModifiedG. 1.Foranyedgee∈P∈P E(P)inparallel:deleteedgesthatareincidenttoe 2.DeletealledgesfromP∈PE(P) Finally,inthelastprocedureofthissection,weshowhowtotranslateaset ¯inG¯toasetofpathsPinG.RecallthatGdenotesthesubgraphofpathsP ofGobtainedbydestroyingtrianglesthatcontainedgesfromM,instep(2)ofReduce. ProcedureTranslate ¯ofindependent(M,3)-pathsinG¯.Input:SetP Output:SetPofindependent(M,3)-pathsinG. 1.Identifyverticesv−andv+thatcorrespondtoonevertexv∈V(G).Asa ¯cyclesandpathsingraphG.ThesepathsandcyclesresultweobtainfromP havelengthsoftheform3iwherei>1andarebuiltupfrom(M,3)-paths.2.Treat(M,3)-pathsasedgesbetweenendpointsofthesepaths.Nowtheprob-lemofselectingasetofindependent(M,3)-pathsinGisreducedtotheoneoffindingasubstantialsetofindependentedges.Invokeanalgorithmfrom[4]toobtainsetPofindependent(inG)(M,3)-paths.ThesetPhasthefollowingproperty:Ifthenumberof(M,3)-pathsinGwhichareincidenttoedgesofP∈Pleastαm¯E(P)isat3thenatleastαm3/4,(M,3)-pathsin GareincidenttoedgesofP∈PE(P).NotethattheresultingsetPisasetof(M,3)-pathswhichareindependentinG.Inadditionthesetispath-substantialwithaconstantspecifiedinthenextlemma. ¯isξ-path-substantialinG¯thenthesetofpathsLemma6.IfasetofpathsP PobtainedbyprocedureTranslateisξ/16-path-substantialinG.Proof.TheprooffollowsfromLemma5andStep(2)ofTranslate.3.3 MainProcedure Nowwecansummarizethediscussioninourmainalgorithm.WedenotebyA÷BthesymmetricdifferencebetweenAandB. ProcedureMatching Input:GraphG. 2 Output:MatchingM∗suchthat|M∗|≥3β(G). 1.FindamaximalmatchingMusingtheprocedureMatchfrom[4].2.LetPI:=∅andM∗:=M.3.IterateO(logn)times: ¯.(a)InvokeReducetoobtaina4L-graphG¯.(b)InvokePathsIn4LGraphtoobtainP (c)UseTranslatetoobtainP. ¯withrespecttoP.(d)UseModifytomodifyG (e)PI:=PI∪P. 4.M∗:=M∗÷(P∈PIE(P)). Proof(ofTheorem3).Firstweestablishthetimecomplexity.WeuseO(log4n)roundsinthefirststep,tofindMusingthealgorithmfrom[4].Ineachiteration,themaintimecomplexitycomesfromPathsIn4LGraphwhich,byLemma4 ¯))=O(log3n).SincewehaveO(logn)iterations,thenumberofisO(log3V(G stepsisO(log4n). ¯foundineachiterationis1-path-ByLemma4,thesetofpathsP256K1¯substantialinG.Therefore,byLemma6,Pis4096K-path-substantialinG andsoinstep(3d)aconstantfractionof(M,3)-pathswillbedeletedfromG.Sincethenumberof(M,3)-pathsinGisO(n4),therewillbeno(M,3)-pathsinGafterO(logn)iterations.Consequently,afterstep(3),PIisamaximalsetof(M,3)-paths.Thus,afterexchangingedgesinstep(4),weobtainmatchingM∗suchthatthereisno(M∗,3)-pathinG.Therefore,byClaim4,|M∗|≥23β(G).FinalRemarks.Anefficientrandomizedalgorithmforapproximatingthemaxi-mummatchingcanbeobtainedbyinvokingarandomizedMISprocedure([7])inanauxiliarygraphwherethevertexsetconsistsofaugmentingpathsandtwoverticesareconnectedifthecorrespondingpathsshareavertexintheoriginalgraph. Theaugmentingpathstechniquecanonlybeappliedtoanunweightedver-sionoftheproblem;toapproximateamaximumweightedmatchingacompletelydifferentapproachmustbetaken. References 1.Awerbuch,B.,Goldberg,A.V.,Luby,M.,Plotkin,S.:Networkdecomposi-tionandlocalityindistributedcomputing.Proc.ofthe30thSymposiumonFoundationsofComputerScience(FOCS19)3–3692.Czygrinow,A.,Ha´n´ckowiak,M.,Szyma´nska,E.:Distributedalgorithmforapproximatingthemaximummatching.DiscreteAppliedMath.publishedonline(March19,2004) 3.Fischer,T.,Goldberg,A.V.,Haglin,D.J.,Plotkin,S.:Approximatingmatchingsinparallel.InformationProcessingLetters46(1993)115–1184.Ha´n´ckowiak,M.,Karo´nski,M.,Panconesi,A.:Onthedistributedcomplexityofcomputingmaximalmatchings.SIAMJ.DiscreteMath.Vol.15,No.1,(2001)41–575.Lov´asz,L.,Plummer,M.:MatchingTheory.Elsevier,AmsterdamandNewYork(1986) 6.Linial,N.:Localityindistributedgraphalgorithms.SIAMJournalonCom-puting21(1)(1992)193–201 7.Luby,M.:ASimpleParallelAlgorithmfortheMaximalIndependentSetProblem.SIAMJ.onComputing15(4)(1986)254–278.
因篇幅问题不能全部显示,请点此查看更多更全内容