河北省唐山市开滦第二中学高中数学 2.1.2-3指数函数及其性质导
学案 新人教A版必修1
学习目标:深入学习指数函数的性质
学习重点:能解决与指数函数有关的综合应用问题 学习过程:
一、关于定义域:求下列函数的定义域
1、y
1 x2161 2、y1
9
3、y164x
二、关于值域:
1、求下列函数的值域 (1)y
x121x3
2(2)y
3
(3)y0.25
(4)y3
x1xx22x12
2,x2,0
(5)y
2、函数yax(a0,a1)在1,2上的最大值比最小值大
三、关于单调性:
1、 求下列函数的单调区间
(1)y
(2)yax
2、 已知(aa2)(aa2)
四、关于奇偶性
1、判断函数f(x)1
2x21x21 x21a,则a的值为______ 210.21x
2x3(a0,a1)
,则x的取值范围是_____________
2的奇偶性
12xexa (a0)是R上的偶函数,求a的值 2、已知函数f(x)aex
一、选择题
1、 若指数函数y(a1)x在(,)上是减函数,那么( ) A、 0a1 B、 1a0 C、 a1 D、 a1 2、已知310,则这样的( )
A、 存在且只有一个 B、 存在且不只一个 C、 存在且x2 D、 根本不存在 3、函数f(x)23x在区间(,0)上的单调性是( ) A、 增函数 B、 减函数
C、 常数 D、 有时是增函数有时是减函数
4、下列函数图象中,函数yax(a0且a1),与函数y(1a)x的图象只能是( )
x y y y y1111 O x O x O x O x A B C D5、函数f(x)2x1,使
f(x)0成立的的值的集合是( )
A、 xx0 B、 xx1 C、 xx0 D、 xx1
6、函数f(x)2,g(x)x2,使f(x)g(x)成立的的值的集合( ) A、 是 B、 有且只有一个元素
C、 有两个元素 D、 有无数个元素
7、若函数ya(b1)(a0且a1)的图象不经过第二象限,则有 ( ) A、a1且b1 B、0a1且b1 C、0a1且b0 D、a1且b0
xx8、F(x)=(1+
2)f(x)(x0)是偶函数,且f(x)不恒等于零,则f(x)( ) 2x1A、是奇函数 B、可能是奇函数,也可能是偶函数 C、是偶函数 D、不是奇函数,也不是偶函数 二、填空题 9、 函数y322x的定义域是_________。
10、 指数函数f(x)ax的图象经过点(2,1),则底数的值是_________。 1611、 将函数f(x)2x的图象向_________平移________个单位,就可以得到函数
g(x)2x2的图象。
12、 函数f(x)()三、解答题
13、已知函数f(x)2x,x1,x2是任意实数且x1x2, 证明:[f(x1)f(x2)]f(
12x1,使f(x)是增函数的的区间是_________
12x1x2). 22x2x14、已知函数 y 求函数的定义域、值域
2
ax1(a0且a1) 15、已知函数f(x)xa1 (1)求f(x)的定义域和值域;
(2)讨论f(x)的奇偶性; (3)讨论f(x)的单调性。